平行线的3个定义
平行线的3个定义如下
1、在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
2、“过直线外一点有唯一的一条直线和已知直线平行”。
3、“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”
平行线
几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
平行线公理是几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如若a∥b,b∥c,则a∥c。
平行线的定义是啥?
1、在初中阶段,定义为在同一平面内,永不相交的两条直线叫平行线。
2、在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的。
平行线的平行公理
1、经过直线外一点,有且只有一条直线与已知直线平行。
2、两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。
注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等,同旁内角互补。
下面分享相关内容的知识扩展:
三维空间里什么叫平行线
在一个平面内不相交的两条直线叫平行线。那三维空间里呢?是不是过一点有无数条平行线?还是只有一条?额。。我写错了。。。过一点是不是有无数条和一条已知直线平行
【三维空间里的平行线】在三维空间里,平行线的定义为:在同一平面内,不相交的两条直线叫做平行线。平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。
【三维空间】三维空间,日常生活中可指由长、宽、高三个维度所构成的空间。而且日常生活中使用的“三维空间” 一词,常常是指三维的欧几里德空间。
点的位置由三个坐标决定的空间。客观存在的现实空间就是三维空间,具有长、宽、高三种度量。数学、物理等学科中引进的多维空间的概念,是在三维空间的基础上所做的科学抽象。三维即前后—上下—左右。三维的东西能够容纳二维。三维空间的长、宽、高三条轴是说明在三维空间中的物体相对原点O的距离关系。
如何判断相交线与平行线
相交线与平行线1、余角、补角、对顶角(相交)的性质:同角或等角的余角相等;同角或等角的补角相等; 对顶角相等。
2、垂直
(1)垂线的性质:①过一点有且只有一条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;
(2)线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;
(3)线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;
3、平行
(1)平行线的定义:在同一平面内不相交的两条直线叫做平行线。
(2)平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
(3)平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
(4)平行公理:经过直线外一点有且只有一条直线平行于已知直线。
提示:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
平行线(数学概念)详细资料大全
几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
平行线公理是几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
如果两条直线都与 第三条直线 平行,那么这两条直线也互相平行。如若a∥b,b∥c,则a∥c。
基本介绍
中文名 :平行线 外文名 :parallel line;parallel 学科 :数学 属性1 :平面几何基础 属性2 :几何线段 定义,基本特征,欧氏几何中平行线的性质和判定,平行公理,定义的拓展,定义
在同一平面内,永不相交的两条直线叫做平行线。平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。【基本定义】 在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的。基本特征
平行线的定义包括三个基本特征:一是在同一平面内,二是两条直线,三是不相交。 在同一平面内,两条直线的位置关系只有两种:平行和相交。欧氏几何中平行线的性质和判定
平行线的性质 正平行线的性质与平行线的判定不同,平行线的判定是由角的数量关系来确定线的位置关系,而平行线的性质则是由线的位置关系来确定角的数量关系,平行线的性质与判定是因果倒置的两种命题。对平行线的判定而言,两直线平行是结论,而对平行线的性质而言,两直线平行却是条件。已知两直线平行。由平行线得到角的关系是平行线的性质,包括:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。 平行线的平行公理 1.经过直线外一点,有且只有一条直线与已知直线平行。 2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。 注意:只有两条 平行线 被第三条直线所截,同位角才会相等,内错角相等 同旁内角互补 平行线的判定 1、同位角相等,两直线平行。 2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。4、两条直线平行于第三条直线时,两条直线平行。 如图,CD∥EF 5、在同一平面内,垂直于同一直线的两条直线互相平行。 6、在同一平面内,平行于同一直线的两条直线互相平行。 7、同一平面内永不相交的两直线互相平行。 在欧几里得几何原本的体系中,这几条判定法则不依赖于第五公设(平行公理),所以在非欧几何中也成立。 找同位角 内错角 同旁内角的 *** 如图,∠4与∠3是一组同位角,形成F型 如图,∠1与∠3是一组内错角,形成Z型 如图,∠4于∠3是一组同旁内角,形成U型 注意:只有题目已知有两线互相平行才能证明它们是以上三个角的其中一个角平行公理
平行公理:经过直线外一点,有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行公理的推论体现了平行线的传递性,它可以作为以后推理的依据。 在欧几里得的几何原本中,第五公设(又称为平行公理)是关于平行线的性质。它的陈述是: “在平面内,如果两条直线被第三条直线所截,一侧的同旁内角之和大于两个直角,那么最初的两条直线相交于这对同旁内角的另一侧。” 这条公理的陈述过于冗长。在1795年,苏格兰数学家Playfair提出了以下以下公理作为平行公理的代替,在被人们广泛的使用。 Playfair's Postulate :在同一平面内,过直线外一点,有且只有一条直线与这条直线互相平行。 平行公理的推论:(平行线的传递性) 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。可以简称为:平行于同一条直线的两条直线互相平行。 非欧几何 参见:非欧几何 由于平行公理陈述冗长,并且不像欧氏几何中的其他公理那么显而易见,人们觉得它更像一个定理,可以从其他公理出发来证明。经历了许多错误的证明,数学家们意识到这确实应作为一条公理。 更重要的是,在19世纪,数学家高斯,鲍耶,罗巴切夫斯基等发现,如果以平行公理的否定形式来代替平行公理,那么可以演绎出一套和欧氏几何完全不同,却没有内在矛盾的公理体系。这个大胆的观点最初很难被人接受,但在逻辑上却没有任何问题。这个观点成为人们对空间和几何的认识的重大转折点,包括爱因斯坦的广义相对论,本质上都受到了这种观点的影响。定义的拓展
在欧氏几何中,在两条平行线中做一条直线AB,以直线AB为半径以逆时针方向做圆,然后以直线AB为半径以顺时针方向再做一个圆,从两个圆的交点做垂线CD垂直于直线AB,若CD与AB的角的角度是90度,则说明两条平行线不会相交。 但欧几里得不敢思考当两条平行线无限长时的情况..... 于是包括罗素、黎曼在内的科学家假设当两条平行线无限长时,他们会在无穷远处相交。后来,非欧几何和黎曼空间就诞生了,该成果给了爱因斯坦很大的启发. 平行线公理就是区分欧氏几何与非欧几何的一个重要区别。