正65537边形的作法(正65537边形的介绍)

wanfu 麦克百科 84 0

正65537边形的作法

谁能告诉我正65537边形的作法

拜托...同学...一位名叫盖尔美斯的用尺规作出了正65537边形,其手稿有整整一只手提箱,现在还保存在哥廷根大学。谁会在网上告诉你啊?

正65537边形的介绍

正65537边形是多边形的一种。共有纤铅65537条边毁哗好,65537个顶点,内角和为11796300°,对角线芦运2147450879条。不过正65537边形可以用尺规作图的 *** 绘出(并不完全是圆)。正65537边形的作法(正65537边形的介绍)-第1张图片-万福百科

下面分享相关内容的知识扩展:

正三角形边长公式

正三角形边长公式:cosA=(b²+c²-a²)/2bc;cosB=(a²+c²-b²)/2ac;cosC=(a²+b²-c²)/2ab,也就是余弦定理。
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。

如何画正十一变形 用尺规作图

正七边形.正十一边形.正十三边形都不能用尺规作图作的出!
早在公元前三世纪,希腊数学家欧几里得就知道,用圆规和直尺可以作出正三角形、正四边形、正五边形、正六边形、正八边形、正十边形等等.但能不能作出正七边形、正九边形、正十一边形、正十三边形、正十七边形呢?两千年来,谁也没有作到.可是一直有很多数学家在试作.数学家们认为总是能作出来的,谁也没有想一想或许用圆规和直尺根本作不出某些正多边形.
1796年3月30日德国戈丁根大学学生高斯用圆规和直尺,作出了正17边形.这下子解决了两千年来的一大难题.这是一个十分了不起的成就,还不满20岁的高斯,不仅作出了正十七边形,更可贵的是他还证明了单用圆规和直尺根本作不出正七边形、正九边形、正十一边形和正十四边形.他深入研究了多边形的规律,得出一个一般公式,清清楚楚地表示出哪些正多边形能作,哪些正多边形不能作.高斯就是这样,圆满周密地彻底解决了两千年来的一大难题.
这位了不起的青年学生,后来成了18、19世纪交替时期德国最杰出的数学家.
早在古希腊时代,人们就能够用直尺和圆规作出正三角形、正四边形、正五边形和正十五边形(以及它们的2n倍的正多边形),但对其它一些正多边形,如正七边形、正十一边形、正十三边形、正十七边形应当如何作图的问题,却长期困扰着数学家们.
1796年,正在哥廷根大学读书的19岁的高斯成功地给出了正十七边形的尺规作图法.不仅如此,后来他还证明了:对于边数是质数的正多边形,当且仅当其边数是形如2exp(2exp(n))+1的费尔玛质数时,才能用尺规作图.(exp表示指数)
这就是说,正七边形、正十一边形、正十三边形是不能用尺规作出的,因为7、11、13不是费尔玛质数,但是能作出正十七边形.高斯的成果解决了困扰人们两千多年的几何问题,震撼了全世界.
17以后的费尔玛质数是257和65537.后来有人真的给出了正257边形尺规作图法,长达80多页!一位名叫盖尔美斯的用尺规作出了正65537边形,其手稿有整整一只手提箱,现在还保存在哥廷根大学.

正多边形为什么有奇数条边

二千多年前,古希腊数学家曾深入研究过一类作图问题,即:如何利用尺规作内接正多边形。早在《几何原本》一书中,欧几里德就用尺规完成了圆内接正三边形、正四边形、正五边形,甚至正十五边形的作图问题。然而,似乎更容易完成的正7、9、11……边形却未能做出。让后来数学家尴尬的是,欧几里德之后的2000多年中,有关正多边形作图仍停留在欧几里德的水平上,未能向前迈进一步。因此,我们可以想象得到,当1796年年仅19岁的高斯宣布他发现了正十七边形的作图 *** 时,会在数学界引起多么巨大的震憾了。

不过,高斯的结果多少显得有些奇怪。他没有完成正七边形或正九边形等的作图,却偏偏隔下中间这一些直接完成了正十七边形。为什么之一个新做出的正多边形是正十七边形而不是正七、九边形呢?在高斯的伟大发现之后,问题仍然存在:正七边形或正九边形等是否可尺规完成?或者更清楚地分享这个问题:正多边形的边数具有什么特征时,它才能用尺规做出?

在经过继续研究后,高斯最终在1801年对整个问题给出了一个漂亮的回答。高斯指出,如果仅用圆规和直尺,作圆内接正n边形,当n满足如下特征之一方可做出:

1) n=2^m;( 为正整数)

2) 边数n为素数且形如 n=2^(2^t)+1(t=0 、1、2……)。简单说,为费马素数。

3) 边数 n具有n=2^mp1p2p3...pk ,其中p1、p2、p3…pk为互不相同的费马素数。

由高斯的结论,具有素数p条边的正多边形可用尺规作图的必要条件是p为费马数。由于我们现在得到的费马素数只有前五个费马数,那么可用尺规作图完成的正素数边形就只有3、5、17、257、65537。进一步,可以做出的有奇数条边的正多边形也就只能通过这五个数组合而得到。这样的组合数只有31种。而边数为偶数的可尺规做出的正多边形,边数或是2的任意次正整数幂或与这31个数相结合而得到。

抱歉,评论功能暂时关闭!