mapreduce的作用是什么
Hadoop是用来开发分布式程序的架构,是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。 MapReduce是用来做大规模并行数据处理的数据模型。方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 扩展资料 Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。主要有以下几个优点 : 1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖 。 2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方
mapreduce工作原理
mapreduce工作原理为:MapReduce是一种编程模型,用于大规模数据集的并行运算。
mapreduce工作原理为:MapReduce是一种编程模型,用于大规模数据集的并行运算。MapReduce采用”分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果。
Mapreduce是什么?
MapReduce就是“任务的分解与结果的汇总”,它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。
下面分享相关内容的知识扩展:
与JAVA类型相比较,MapReduce中定义的数据类型有哪些特点?
MapReduce 是一种编程模型,用于在分布式计算集群上处理大量数据。它通常用于计算和分析海量的数据集,例如搜索引擎中的网页抓取数据、社交网络中的用户信息等。
MapReduce 中定义的数据类型与 Java 类型相比有以下几个特点:
MapReduce 中的数据类型主要包括键值对(Key-Value pairs),即 (Key, Value)。键值对中的键(Key)用于排序和分组,而值(Value)则表示对应的数据值。
MapReduce 中的键值对是有序的,即按照键值对中的键排序。
MapReduce 中的键值对可以通过自定义的分区函数(partition function)来按照指定的键范围将数据分成多个分区(partition),从而支持数据的分布式处理。
总之,MapReduce 中定义的数据类型与 Java 类型相比,更加灵活、高效,可以更好地支持分布式计算集群中的数据处理和分析。
如何快速地编写和运行一个属于自己的MapReduce例子程序
大数据的时代, 到处张嘴闭嘴都是Hadoop, MapReduce, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapReduce程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapReduce的人望而却步。本文会教你如何用最快最简单的 *** 编写和运行一个属于自己的MapReduce程序, let's go!
首先有两个前提:
1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和mapreduce工作正常 (这个真的是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)
2. 集群上安装了JDK (编译运行时会用到)
正式开始
1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapReduce程序, 而不是如何写好一个功能齐全的MapReduce程序)
内容如下:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class myword {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println('Usage: wordcount <in> <out>');
System.exit(2);
}
Job job = new Job(conf, 'word count');
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
与官方版本相比, 主要做了两处修改
1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples;
2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)
2. 拿到hadoop 运行的class path, 主要为编译所用
运行命令
hadoop classpath
保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:
/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-mapreduce/lib/*:/usr/lib/gphd/hadoop-mapreduce/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/ *** -plugins/*:
3. 编译
运行命令
javac -classpath xxx ./myword.java
xxx部分就是上一步里面取到的class path
运行完此命令后, 当前目录下会生成一些.class 文件, 例如:
myword.class myword$IntSumReducer.class myword$TokenizerMapper.class
4. 将class文件打包成.jar文件
运行命令
jar -cvf myword.jar ./*.class
至此, 目标jar 文件成功生成
5. 准备一些文本文件, 上传到hdfs, 以做word count的input
例子:
随意创建一些文本文件, 保存到mapred_test 文件夹
运行命令
hadoop fs -put ./mapred_test/
确保此文件夹成功上传到hdfs 当前用户根目录下
6. 运行我们的程序
运行命令
hadoop jar ./myword.jar myword mapred_test output
顺利的话, 此命令会正常进行, 一个MapReduce job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。
至此大功告成!
如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapReduce job。
但是原理大同小异, 练手的话, 基本够了。
一个抛砖引玉的简单例子, 欢迎板砖。
转载
MapReduce分片大小为128M,一个1G的文件将被分为_____片。
【答案】:8解析:1G=1024M,一个分片大小为128M,故可分为1024/128=8片。