傅里叶变换的意义是什么啊?
常见的傅里叶变换表如下:
傅里叶变换,是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。
傅里叶变换的目的和意义
目的: 把声音、图像都分解为N多个三角函数的叠加。使用不同的基本函数去分解可以得到不同变换。傅里叶变换只是其中一种,还是有拉普拉斯变换、Z 变换等下面分享相关内容的知识扩展:
如何理解数字信号处理中的离散傅立叶变换以及FFT
离散傅里叶变换:傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。
离散化也就是要采样。我们知道,时域等间隔采样,频域发生周期延拓;频域采样,时域发生周期延拓。那么要得到时域频域都离散的结果,显然时域频域都要采样。周期延拓怎么办?只取一个周期就行了。
总结一下:
之一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;
第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。
第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。
这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。
FFT:
这就是DFT的一种快速算法。
复数的加法乘法计算量很大,FFT利用了DFT中WN的周期性和对称性,把一个N项序列按奇偶分组,分为两个N/2项的子序列,继续分解,迭代下去,大大缩减计算量。具体算法就看那张蝶形图吧。
FFT对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅里叶变换,可以说是进了一大步。
求傅立叶变换可以直接把每个部分变化后相加吗
是的,需要把每个部分变化后相加。“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,
到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?
傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。
哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。
ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:
以下就是傅里叶变换的4种变体(摘自, *** )
连续傅里叶变换
一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换 (inverse Fourier transform)为:

即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以

来代换,而形成新的变换对:

或者是因系数重分配而得到新的变换对:

一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。
分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。
当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform).
另一个值得注意的性质是,当f(t)为纯实函数时,F(−ω) = F*(ω)成立.
傅里叶级数
连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

其中Fn为复幅度。对于实值函数,函数的傅里叶级数可以写成:

其中an和bn是实频率分量的幅度。
离散时域傅里叶变换
离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆变换。
离散傅里叶变换
离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。
为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:

其中Xk是傅里叶幅度。直接使用这个公式计算的计算复杂度为O(n*n),而快速傅里叶变换(FFT)可以将复杂度改进为O(n*lgn)。(后面会具体分享FFT是如何将复杂度降为O(n*lgn)的。)计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的 *** 。
傅立叶变换为什么要对函数f乘以exp
傅里叶变换公式
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至wnw678@qq.com举报,一经查实,本站将立刻删除。